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Introduction How should the degree of association 
between a dichotomous variable and a continuous 
variable be measured? The usual answer is to use 
the point biserial correlation coefficient. This 
coefficient, however, is specially designed for 
the case in which the conditional distribution of 
y, the continuous variable, given the value of x, 
the dichotomous variable, is normal, and the mean 
of the conditional distribution of y depends on x 
but the variance does not. 

Goodman and Kruskal (1954) have argued per- 
suasively that a measure of association for cross 
classifications should be chosen with a particu- 
lar underlying model and a purpose in mind. Many 
different models could be proposed to describe a 
relationship between a dichotomous and a continu- 
ous variable; two general models will be discussed 
here. A measure of association might be examined 
with many different purposes in mind. In this 
paper, some measures of association are suggested 
which are appropriate for the purpose of screen- 
ing y variables for use in predicting x. That is, 
we propose measures of association appropriate for 
the classification problem. 

The basic model to be discussed is one in 
which the x variable takes on the values 1 and 2 
with probabilities (1 -p) and p respectively. The 
distribution of y given x is Fx(y). The problem 

is to decide how useful the y variable would be in 
assigning new individuals to x categories, given 

observations with x = 1 and n2 observations with 

x = 2, with N = n1 + n2 and observations i = 

1,2 and j = 1,...ni. We discuss two situations: 

(1) F1(y) and F2(y) differ only in the mean; (2) 

F1(y) and F2(y) may have different variances as 

well as different means. 

Model 1 F1(y) and F2(y) differ only in the mean. 

If normality is assumed, the point biserial corre- 
lation coefficient, p, is appropriate. The proba- 
bility of misclassification using y is a function 
of A, the distance between F1(y) and F2(y), where 

(1) = 
2 

and p is a function of A, 

(2) / 
1 + p(1-p)A2 

The maximum estimator of p is 

(3) r = 
(1-P) 

Pb 1 + 2 

where 
(4) p = n2 /N 

(5) 

N(72 - 

+ 
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Conditional on n1 and n2, a test of p = 0 can be 

based on the usual t test; 

(6) t - 

1 

has a t distribution with N -2 degrees of freedom 
when p = O. 

When Model 1 is true, but we are unwilling to 
assume normality, it is natural to consider non- 
parametric classification procedures based on 
ranks. Das Gupta (1964) suggests a classification 

procedure based on the sample cumulative distribu- 
tion function. Define 

(7) Fi(a) = ci /ni 

where ci is the number of observations y.. < a. 

Let y' be an observation to be classified. Then 

assign an individual to category x = 1 if 

(8) - < (F2(y`) - . 

Using this classification procedure, the probabil- 
ity of misclassification is a function of ir, where 

(9) =P(y2>y1 ) 

is the probability that a y observation from x = 2 

is larger than a y observation from x = 1. For a 
dichotomous and a continuous variable, Goodman and 
Kruskal's measure of association y reduces to 

(10) . 

The Mann- Whitney U statistic provides an estimator 
of and 

(11) = 2U /nin2 - 1 . 

Conditional on n1 and n2, a test of y - 0 can be 

made using tables for the U statistic. 

Another method of classification using ranks 

was developed by Stoller (1954) for the situation 
where Fx(y) is absolutely continuous and the opti- 

mal discrimination rule consists of classifying an 

individual into category 1 if y < a* and into cat- 
egory 2 otherwise. The probability of a correct 
classification using any cutoff point a is 

(12) Q( a ) = (1- p)F1(a) + P(1 - F2(a)) 

and a natural measure of association is 

P( misclassificationly known ) 
(13) = 1 P( mísclassificationly unknown ) 

Q(a *) -m 
1 - m 

where m max(p,(1 -p)) . 

A distribution -free estimate of Q( a ) for 

any a is obtained by substituting = n2 /N and 



in (12) to obtain 

(14) Q( a ) cl - c2) 

The point a* is estimated using the point a for 
which Q( a ) is maxiMized. Thus letting 

(15) d+ max(cl - c2) 

(16) Q( a* = + d +) . 

If it is not known apriori whether 
42 > 

or 

< the rule can be extended by letting 

(17) 

max(c2 - 

d = max(d d-) 

and defining 

(18) a* ) 

and 

(19) 1-m 

This derivation assumes that we want to estimate 
p from the sample at hand. However, if - n2, 

or if we can assume .5, the formulation is 
simplified and the distribution theory is known. 
Define 

D+ max(F1(a) - F2(a)) 

(20) D maax(F2(a) - 

D = max (D +, D) ; 

these are the well -known Kolmogorov -Smirnov sta- 
tistics. Then 

(21) 

and a test of X1 = 0 conditional on n1 and n2 can 

be based on tables of the D statistic. 

Some general properties of these three mea- 
sures of association are obvious. The measures p 

and y range from -1.0 to +1.0 while must lie 

between 0 and +1.0. fixed F1(y) and F2(y), y 

is unaffected by the value of p, but p and 
X1 

de- 

crease as - .51 increases. The estimator 
1 

can be expected to have a positive bias. The mea- 
sure can be expected to be much more strongly 
affected by the presence of outliers. 

The behavior of these association measures is 
illustrated in two examples. Example 1 is calcu- 
lated on the data shown in Table 1 which is gener- 
ated by a normal shift model with = 1. The esti- 
mates are rpb .43, = .55, and 1 = .67; all 
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are significantly different from zero at the 5% 
level; note that rpb has the smallest and 1 the 
largest value. For example 2, the data from Table 
1 was used again, except that the largest observa- 
tion in category 1 was changed from 7.6 to 27.6. 
For example 2, the estimates are r 

pb 
= .34, = 

.46, and 1 = .60; both and 1 are still signi- 
ficant at the 5% level. Note that the effect of 
the outlier on was considerably smaller than 

on rpb and 

TABLE 1. DATA GENERATED FROM A NORMAL DISTRIBUTION 

WITH v2 100 

u2=10 

-16.9 -19.0 
-12.2 -9.9 
-6.7 -5.8 

-3.4 0.7 
-2.1 1.6 

-1.0 8.1 
-0.9 10.4 
-0.8 10.7 
0.7 10.8 
1.5 11.0 
1.8 11.1 
2.9 12.8 

3.7 21.5 

3.9 22.1 

7.6 26.0 

These three measures of association provide 
reasonable and interpretable measures of associa- 
tion for the classification problem where only a 
difference in means is of interest. But what 
about the situation in which the variances may 
differ also? 

Model 2 The conditional distributions F1(y) and 

F2(y) may differ in variance as well as in mean. 

If normality is assumed, the probability of mis- 
classification using a quadratic classification 
rule is a rather messy function of the means and 
variances which suggests no simple overall mea- 
sure. As an ad hoc two -stage procedure, one could 
examine rpb first and if it were not found to be 

significant, take a look at the F statistic. 

A one -stage procedure can be obtained by ex- 
tending the Stoller classification procedure to a 
rule in which an observation is assigned to cate- 
gory 1 if y < at, or y > a. Again, the cutoff 

points a* and a2 are estimated by maximizing the 

estimated probability of a correct classification 
and the measure 
from the data, 

(22) 2 = 1 
where 

(23) a - 

X is 

n2 

used. When p is estimated 

(a - d - d ) 

N(1 - m) 

< a2 
e se otherwise 



For p .5 

(24) = D+ + D 

where D+ and D are given in (29). Using defini- 
tion (24), the distribution of 

X2 
conditional on 

and n2 is given by Gnedenko (1954). 

In examples 1 and 2, where a2 = .73, 
'X2 

.67 

respectively, 
'2 

is only slightly larger than 

It is larger than because of the -19.0 observa- 

tion in category 2 which is smaller than all the 
observations in category 1. In small samples like 

these, will be overly sensitive to one observa- 

tion. 

Example 3 has been calculated on the data 
shown in Table 2 which was generated by a normal 
model with p = 0 and al = 10, = 40. The esti- 

mates of the association measures are rpb = .19, 

y = .08, â1 = .40, 
2 

= .73. The estimates of p 

and y are small. Although not significant at the 
5% level, 1 is fairly sizeable by the standards 
one is used to with measures of association. Of 

course, if the variances are quite different, one 
could often expect to do better even with a one- 
sided classification rule than would be obvious 
from examination of a difference in means. The 

estimated 
X2 

is significant at the 5% level. 

TABLE 2. DATA GENERATED FROM A NORMAL DISTRIBUTION 

WITH 

=10 cs2=40 

-25.1 -57.0 
-13.0 -50.6 
-10.9 -23.6 
-6.6 -17.7 
-6.1 -15.4 
-4.3 -14.0 
-1.5 -10.6 
-1.3 6.6 
0.1 7.6 

3.2 28.0 

3.8 42.8 
4.0 56.4 
9.0 59.0 

10.3 61.2 
13.5 69.2 
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The measure a2 would seem to be a useful mea- 

sure of association for a dichotomous and a con- 
tinuous variable for the classification problem in 
which means, variances, or both may differ. 

Additional research to determine large and 
small sample properties of these sample measures 
of association for specific choices of F1(y) and 

F2(y) is underway. Investigation of other models 

for the relationship between dichotomous x and 
continuous y and other problems requiring a mea- 
sure of association should lead to alternative 
measures. 
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